Web hosting

Thursday, December 30, 2010

Chapter 6:Generators, Turbines and Power Plants

Chapter 6: Turbines, Generators and Power Plants

As we learned in Chapter 2, electricity flows through wires to light our lamps, run TVs, computers and all other electrical appliances. But where does the electricity come from?
In this chapter, we'll learn how electricity is generated in a power plant. In the next few chapters, we'll learn about the various resources that are used to make the heat to produce electricity. InChapter 7, we'll learn how the electricity gets from the power plant to homes, school and businesses.

Thermal power plants have big boilers that burn a fuel to make heat. A boiler is like a teapot on a stove. When the water boils, the steam comes through a tiny hole on the top of the spout. The moving steam makes a whistle that tells you the water has boiled. In a power plant, the water is brought to a boil inside the boiler, and the steam is then piped to the turbine through very thick pipes.
In most boilers, wood, coal, oil or natural gas is burned in a firebox to make heat. Running through the fire box and above that hot fire are a series of pipes with water running through them. The heat energy is conducted into the metal pipes, heating the water in the pipes until it boils into steam. Water boils into steam at 212 degrees Fahrenheit or 100 degrees Celsius.
The top picture on the right is of a small power plant located at Michigan State University. The black area to the left of the power plant is coal, the energy source that is burned to heat the water in the boilers of this plant.
In the second picture to the left, you'll see the turbine and generator at MSU's power plant. The big pipe on the left side is the steam inlet. On the right side of the turbine is where the steam comes out. The steam is fed under high pressure to the turbine. The turbine spins and its shaft is connected to a turbogenerator that changes the mechanical spinning energy into electricity.
The third picture on the right is of the turbine fan before it is placed inside the turbine housing. You can see a close-up of the turbine blades on the fourth picture. The turbine has many hundreds of blades that are turned at an angle like the blades of a fan. When the steam hits the blades they spin the turbine's shaft that is attached to the bottom of the blades.
After the steam goes through the turbine, it usually goes to a cooling tower outside the where the steam cools off. It cools off and becomes water again. When the hot pipes come into contact with cool air, some water vapor in the air is heated and steam is given off above the cooling towers. That's why you see huge white clouds sometimes being given off by the cooling towers. It's not smoke, but is water vapor or steam. This is not the same steam that is used inside the turbine.
The cooled water then goes back into the boiler where it is heated again and the process repeats over and over.
Most power plants in California use cleaner-burning natural gas to produce electricity. Others use oil or coal to heat the water. Nuclear power plants use nuclear energy to heat water to make electricity. Still others, called geothermal power plants, use steam or hot water found naturally below the earth's surface without burning a fuel. We'll learn about those energy sources in the next few chapters.
 How the Generator Works

The turbine is attached by a shaft to the turbogenerator. The generator has a long, coiled wire on its shaft surrounded by a giant magnet. You can see the inside of the generator coil with all its wires in the picture on the right.
The shaft that comes out of the turbine is connected to the generator. When the turbine turns, the shaft and rotor is turned. As the shaft inside the generator turns, an electric current is produced in the wire. The electric generator is converting mechanical, moving energy into electrical energy.
The generator is based on the principle of "electromagnetic induction" discovered in 1831 by Michael Faraday, a British scientist. Faraday discovered that if an electric conductor, like a copper wire, is moved through a magnetic field, electric current will flow (or "be induced") in the conductor. So the mechanical energy of the moving wire is converted into the electric energy of the current that flows in the wire.
The electricity produced by the generator then flows through huge transmission wires that link the power plants to our homes, school and businesses. If you want to learn about transmission lines, go to Chapter 7.
All power plants have turbines and generators. Some turbines are turned by wind, some by water, some by steam.
In next chapter you can learn about Electricity Transmission System.

Thursday, November 18, 2010

Types of Hydropower Plants


Types of Hydropower Plants

There are three types of hydropower facilities: impoundment, diversion, and pumped storage. Some hydropower plants use dams and some do not. The images below show both types of hydropower plants.
Many dams were built for other purposes and hydropower was added later. In the United States, there are about 80,000 dams of which only 2,400 produce power. The other dams are for recreation, stock/farm ponds, flood control, water supply, and irrigation.
Hydropower plants range in size from small systems for a home or village to large projects producing electricity for utilities. The sizes of hydropower plants are described below.

Impoundment

The most common type of hydroelectric power plant is an impoundment facility. An impoundment facility, typically a large hydropower system, uses a dam to store river water in a reservoir. Water released from the reservoir flows through a turbine, spinning it, which in turn activates a generator to produce electricity. The water may be released either to meet changing electricity needs or to maintain a constant reservoir level.
  Drawing showing a cross section of an impoundment dam and hydropower plant. Transmission lines conduct electricity to homes and businesses. Dam stores water. Penstock carries water to the turbines. Generators are rotated by the turbines to generate electricity. Turbines are turned by the force of the water on their blades.
An impoundment hydropower plant dams water in a reservoir.

Diversion

A diversion, sometimes called run-of-river, facility channels a portion of a river through a canal or penstock. It may not require the use of a dam.
  Photo of an aerial view of a river with a waterfall and no dam. The hydropower intake and outlet are labeled. The intake is above the waterfall; the outlet is below it.
The Tazimina project in Alaska is an example of a diversion hydropower plant. No dam was required.

Pumped Storage

When the demand for electricity is low, a pumped storage facility stores energy by pumping water from a lower reservoir to an upper reservoir. During periods of high electrical demand, the water is released back to the lower reservoir to generate electricity.

Sizes of Hydroelectric Power Plants

Facilities range in size from large power plants that supply many consumers with electricity to small and micro plants that individuals operate for their own energy needs or to sell power to utilities.

Large Hydropower

Although definitions vary, DOE defines large hydropower as facilities that have a capacity of more than 30 megawatts.

Small Hydropower

Although definitions vary, DOE defines small hydropower as facilities that have a capacity of 100 kilowatts to 30 megawatts.

Micro Hydropower

A micro hydropower plant has a capacity of up to 100 kilowatts. A small or micro-hydroelectric power system can produce enough electricity for a home, farm, ranch, or village.
  Drawing shows a micro hydropower plant. Intake gates allow water to flow through the Penstock Powerhouse to the turbine.
>Micro Hydropower Plant

Types of Hydropower Turbines


Types of Hydropower Turbines

There are two main types of hydro turbines: impulse and reaction. The type of hydropower turbine selected for a project is based on the height of standing water—referred to as "head"—and the flow, or volume of water, at the site. Other deciding factors include how deep the turbine must be set, efficiency, and cost.
Terms used on this page are defined in the glossary.

Impulse Turbine

The impulse turbine generally uses the velocity of the water to move the runner and discharges to atmospheric pressure. The water stream hits each bucket on the runner. There is no suction on the down side of the turbine, and the water flows out the bottom of the turbine housing after hitting the runner. An impulse turbine is generally suitable for high head, low flow applications.
 Photo of a Pelton hydropower turbine.
Pelton hydropower turbine
Credit: GE Energy
  • Pelton

    A pelton wheel has one or more free jets discharging water into an aerated space and impinging on the buckets of a runner. Draft tubes are not required for impulse turbine since the runner must be located above the maximum tailwater to permit operation at atmospheric pressure.
    A Turgo Wheel is a variation on the Pelton and is made exclusively by Gilkes in England. The Turgo runner is a cast wheel whose shape generally resembles a fan blade that is closed on the outer edges. The water stream is applied on one side, goes across the blades and exits on the other side.
  • Cross-Flow

    A cross-flow turbine is drum-shaped and uses an elongated, rectangular-section nozzle directed against curved vanes on a cylindrically shaped runner. It resembles a "squirrel cage" blower. The cross-flow turbine allows the water to flow through the blades twice. The first pass is when the water flows from the outside of the blades to the inside; the second pass is from the inside back out. A guide vane at the entrance to the turbine directs the flow to a limited portion of the runner. The cross-flow was developed to accommodate larger water flows and lower heads than the Pelton.

Reaction Turbine

A reaction turbine develops power from the combined action of pressure and moving water. The runner is placed directly in the water stream flowing over the blades rather than striking each individually. Reaction turbines are generally used for sites with lower head and higher flows than compared with the impulse turbines.
 Photo of a Propeller hydropower turbine.
Propeller hydropower turbine
Credit: GE Energy
  • Propeller

    A propeller turbine generally has a runner with three to six blades in which the water contacts all of the blades constantly. Picture a boat propeller running in a pipe. Through the pipe, the pressure is constant; if it isn't, the runner would be out of balance. The pitch of the blades may be fixed or adjustable. The major components besides the runner are a scroll case, wicket gates, and a draft tube. There are several different types of propeller turbines:

     Photo of a Bulb hydropower turbine.
    Bulb hydropower turbine
    Credit: GE Energy
    • Bulb turbine

      The turbine and generator are a sealed unit placed directly in the water stream.
    • Straflo

      The generator is attached directly to the perimeter of the turbine.
    • Tube turbine

      The penstock bends just before or after the runner, allowing a straight line connection to the generator.
    • Kaplan

       Photo of a Kaplan hydropower turbine.
      Kaplan hydropower turbine
      Credit: GE Energy
      Both the blades and the wicket gates are adjustable, allowing for a wider range of operation.
  • Francis

     Photo of a Francis hydropower turbine.
    Francis hydropower turbine
    Credit: GE Energy
    A Francis turbine has a runner with fixed buckets (vanes), usually nine or more. Water is introduced just above the runner and all around it and then falls through, causing it to spin. Besides the runner, the other major components are the scroll case, wicket gates, and draft tube.
  • Kinetic

    Kinetic energy turbines, also called free-flow turbines, generate electricity from the kinetic energy present in flowing water rather than the potential energy from the head. The systems may operate in rivers, man-made channels, tidal waters, or ocean currents. Kinetic systems utilize the water stream's natural pathway. They do not require the diversion of water through manmade channels, riverbeds, or pipes, although they might have applications in such conduits. Kinetic systems do not require large civil works; however, they can use existing structures such as bridges, tailraces and channels.

Electricity Basics

Electricity Basics

Electricity Is a Secondary Energy Source

A hand unplugging an electrical appliance from an outlet
Source: Stock photography (copyrighted)
Compact fluorescent light bulbs use a fraction of the electricity as incandescent light bulbs to produce the same amount of illumination.
Energy efficient light bulb.
Source: Stock photography (copyrighted)
Electricity is the flow of electrical power or charge. It is both a basic part of nature and one of our most widely used forms of energy.
Electricity is actually a secondary energy source, also referred to as an energy carrier. That means that we get electricity from the conversion of other sources of energy, such as coal, nuclear, or solar energy. These are called primary sources. The energy sources we use to make electricity can be renewable or non-renewable, but electricity itself is neither renewable or nonrenewable.

Electricity Use Has Dramatically Changed Our Daily Lives

Before electricity became available over 100 years ago, houses were lit with kerosene lamps, food was cooled in iceboxes, and rooms were warmed by wood-burning or coal-burning stoves.
Many scientists and inventors have worked to decipher the principles of electricity since the 1600s. Some notable accomplishments were made by Benjamin Franklin, Thomas Edison, and Nikola Tesla.
Benjamin Franklin demonstrated that lightning is electricity. Thomas Edison invented the first long-lasting incandescent light bulb.
Prior to 1879, direct current (DC) electricity had been used in arc lights for outdoor lighting. In the late 1800s, Nikola Tesla pioneered the generation, transmission, and use of alternating current (AC) electricity, which reduced the cost of transmitting electricity over long distances. Tesla's inventions used electricity to bring indoor lighting to our homes and to power industrial machines.
Despite its great importance in our daily lives, few of us probably stop to think what life would be like without electricity. Like air and water, we tend to take electricity for granted. But we use electricity to do many jobs for us every day — from lighting, heating, and cooling our homes to powering our televisions and computers.


Chapter 5:Stored Energy & Batteries

Chapter 5: Stored Energy and Batteries
Energizer Bunny
Energy cannot be created or destroyed, but it can be saved in various forms. One way to store it is in the form of chemical energy in a battery. When connected in a circuit, a battery can produce electricity.
If you look at a battery, it will have two ends &emdash; a positive terminal and a negative terminal. If you connect the two terminals with wire, a circuit is formed. Electrons will flow through the wire and a current of electricity is produced.
Inside the battery, a reaction between the chemicals takes place. But reaction takes place only if there is a flow of electrons. Batteries can be stored for a long time and still work because the chemical process doesn't start until the electrons flow from the negative to the positive terminals through a circuit.
 How the Chemical Reaction Takes Place in a Battery
A very simple modern battery is the zinc-carbon battery, called the carbon battery for short.
This battery contains acidic material within and a rod of zinc down the center. Here's where knowing a little bit of chemistry helps.
When zinc is inserted into an acid, the acid begins to eat away at the zinc, releasing hydrogen gas and heat energy. The acid molecules break up into its components: usually hydrogen and other atoms. The process releases electrons from the Zinc atoms that combine with hydrogen ions in the acid to create the hydrogen gas.
If a rod of carbon is inserted into the acid, the acid does nothing to it.
But if you connect the carbon rod to the zinc rod with a wire, creating a circuit, electrons will begin to flow through the wire and combine with hydrogen on the carbon rod. This still releases a little bit of hydrogen gas but it makes less heat. Some of that heat energy is the energy that is flowing through the circuit.
The energy in that circuit can now light a light bulb in a flashlight or turn a small motor. Depending on the size of the battery, it can even start an automobile.
Eventually, the zinc rod is completely dissolved by the acid in the battery, and the battery can no longer be used.
For a "great" on-line page about batteries, visit the Energizer Learning Center.
 Sidebar
Picture of Voltaic Pile
As we read in Chapter 1, Alessandro Volta created the first battery (also see our "Super Scientists" page).
Volta called his battery the Voltaic Pile. He stacked alternating layers of zinc, cardboard soaked in salt water and silver. It looked like this:
If you attach a wire to the top and bottom of the pile, you create an electric current because of the flow of electrons. Adding another layer will increase the amount of electricity produced by the pile.
 Different Types of Batteries
Different types of batteries use different types of chemicals and chemical reactions. Some of the more common types of batteries are:
  • Alkaline battery – Used in Duracell® and Energizer® and other alkaline batteries. The electrodes are zinc and manganese-oxide. The electrolyte is an alkaline paste.
  • Lead-acid battery – These are used in automobiles. The electrodes are made of lead and lead-oxide with a strong acid as the electrolyte.
  • Lithium battery – These batteries are used in cameras for the flash bulb. They are made with lithium, lithium-iodide and lead-iodide. They can supply surges of electricity for the flash.
  • Lithium-ion battery – These batteries are found in laptop computers, cell phones and other high-use portable equipment.
  • Nickel-cadmium or NiCad battery – The electrodes are nickel-hydroxide and cadmium. The electrolyte is potassium-hydroxide.
  • Zinc-carbon battery or standard carbon battery – Zinc and carbon are used in all regular or standard AA, C and D dry-cell batteries. The electrodes are made of zinc and carbon, with a paste of acidic materials between them serving as the electrolyte.
 Food – Another Method of Storing Energy
Batteries store energy in a chemical process, but there are other ways of storing energy. Consider the "food chain" on our planet.
Plants, like grass in a meadow, convert the sun's energy through photosynthesis into stored chemical energy. This energy is stored in the plant cells is used by the plant to grow, repair itself and reproduce itself.
Cows and other animals eat the energy stored in the grass or grain and convert that energy into stored energy in their bodies. When we eat meat and other animal products, we in turn, store that energy in our own bodies. We use the stored energy to walk, run, ride a bike or even read a page on the Internet.